

10th Brazilian Conference on Natural Products XXXVI RESEM

4-7 November 2025, Belo Horizonte, MG, Brazil

Section: 05

E

Encapsulation of *Syzygium aromaticum* and *Cymbopogon citratus* Essential Oils using new technology with the Chitosan-Cholesteryl polymer and new methodology in homogenization by Ultrasound in a probe.

Danielle Fernandes da Silva¹, Jéssica Amaral¹, Regiane Bueno², João Pedro Bomfim², Toby Bruce³, David Buss³, Clare Hoskins⁴, Luis Guillermo Cuadrado¹, Moacir Rossi Forim¹, Maria Fátima das Graças Fernandes da Silva¹, João Batista Fernandes¹

1 – Universidade Federal de São Carlos, Dpto. de Química, Rod. Washington Luís, Km 235, São Carlos-SP, Brasil. 2- São Paulo State University “Júlio de Mesquita Filho” – UNESP School of Agricultural Sciences – FCA, Botucatu Campus Department of Plant Protection. 3- School of Life Sciences, Huxley Building, Keele University, Keele, Staffordshire, ST5 5BG, UK. 4- Dept. of Pure and Applied Chemistry Technology Innovation Centre University of Strathclyde 99 George Street Glasgow UK

Botanical pesticides are of great importance in Integrated Pest and Disease Management; they control insect pests and plant pathogens, pose no risk to natural enemies, and are environmentally friendly. However, they have some disadvantages that hinder their use in agriculture, making them poorly accepted by the agricultural community. These include a short period of activity due to their faster degradation due to their volatile nature. They are also insoluble in water. This study sought to optimize the activity of these pesticides by encapsulating the active ingredient, thereby increasing the availability of these compounds to protect plants and improving their water solubility. Previous studies with the oils *Syzygium aromaticum* and *Cymbopogon citratus*, popularly known as Clove and Lemongrass, showed promising activity against the corn pest *Spodoptera frugiperda*, so encapsulation methods for these oils were used in this study. These encapsulated formulations were produced as an emulsion using only water, the polymer, and the oil, and homogenization was performed using probe ultrasound. The polymer used was chitosan-cholesteryl, a novel molecule being tested for encapsulation of chemotherapy drugs for pancreatic cancer. After emulsion formation, they were quantified by GC-MS. The result was emulsions with excellent homogenization without precipitates or supernatants, and GC quantification demonstrated 80% encapsulation of the active ingredient.

Keywords: Insecticide, Essential oil, Encapsulation, Polymer

Sociedade Brasileira de Química
Divisão de Produtos Naturais

UNIVERSIDADE FEDERAL
DE MINAS GERAIS

